
EIDMA
Lecture 10

• Stars-and-bars principle

• Properties of 
𝑛
𝑘



Recall the example:

In how many ways can one paint 10 benches with three colors, 𝑐1, 
𝑐2 and 𝑐3 (say red, green and blue) so that each bench is

painted in one color? The 

order of colors is arbitrary 

but fixed.



We solved the task in the case where benches and colors are 

distinguishable. 

If colors are not distinguishable (we are color-blind), the 

question becomes identical with the question of painting the 

benches with just one color; benches distinguishable or not there 

is just one possibility. 

This only leaves open the case where colors are distinguishable, 

and benches are not. In this case the question is not WHICH 

bench is painted what color but HOW MANY benches are 

painted red, how many are painted green and how many are 

painted blue.



Denote by xi the number of benches painted 𝑐𝑖. Since each 

bench must be painted, 𝑥1 + 𝑥2 + 𝑥3 = 10 and each 𝑥𝑖 must 

be a nonnegative integer; 𝑥𝑖 = 0 means no bench is painted 𝑐𝑖 . 

This means, that we are looking for the number of nonnegative, 

integer solutions to the equation 𝑥1 + 𝑥2 + 𝑥3 = 10.

Notice that we are after the number of solutions to this equation, 

not after solutions. 



This problem is also called counting 10-element "subsets with 

repetitions" (or combinations with repetitions ) of a 3-element 

set {𝑐1, 𝑐2, 𝑐3}. Each such "subset" is represented by an ordered  

triple of nonnegative integers, (𝑥1, 𝑥2, 𝑥3) with 𝑥1 + 𝑥2 + 𝑥3 =
10 (meaning we take 𝑥1 copies of 𝑐1 etc.).

For example, (2,5,3) represents the (2+5+3) 10-element subset 

{𝑐1, 𝑐1 , 𝑐2 , 𝑐2, 𝑐2, 𝑐2, 𝑐2 , 𝑐3 , 𝑐3 , 𝑐3} of {𝑐1, 𝑐2, 𝑐3} with 𝑐1 repeated 

2 times, 𝑐2 appearing 5 times and 𝑐3 – 3 times. This is the same 

as {𝑐2, 𝑐3, 𝑐2, 𝑐2, 𝑐1, 𝑐2 , 𝑐3 , 𝑐1 , 𝑐3 , 𝑐2} but (5,3,2) denotes a "set" 

with 5 𝑐1's, 3 𝑐2's and 2 𝑐3's.

Another way of looking at this problem is this: in how many 

ways we can clone 3 sheep, Dolly, Molly and Polly so that we 

get 10 sheep, e.g., 2 Dollies, 5 Mollies and 3 Pollies.



A way of solving at the problem is to line-up the benches and 

split the line into three parts (some of them possibly empty). The 

first group will be painted c1 the second c2 and the third c3. This 

can be achieved by inserting two separators into our line of 

benches.



A mental exercise: line-up 12 benches instead of 10 and tip over 

two of them – they will serve as the separators. In how many 

ways can you do this? You can line them up in one way only 

(because they are indistinguishable) and you can choose your 

two separators in 10 + 2
2

=
12
2

= 66 ways.



Comprehension.

Show that the following 4 questions have the same answer:

1. We draw ten times from a box of 3 different objects, after 

each draw returning the drawn object to the box. What is the 

number of possible results (we disregard the order in which the 

objects are drawn)?

2. What is the number of polynomials of degree 10 with the 

coefficient of x10 equal to 1 and with 10 roots, all in {3,-1,4}?

3. What is the number of nonnegative integer solutions to                       

x1+x2+x3=10?

4. What is the number of 10-subsets with repetitions of a 3-

element set?



Theorem.

The number of k-element subsets with unspecified number of 

repetitions of an n-element set is 
𝑘 + 𝑛 − 1
𝑛 − 1

.

Proof.

This is an easy generalization of the previous example.

This method is also known as "stars and bars". You split the 

row of k stars into n parts inserting 𝑛 − 1 vertical bars. For 

example, **|*****|*** represents the (2,5,3) 10-element 

subset with repetitions (2 red benches, 5 green and 3 blue 

ones) of {red, green, blue} and ||*********** - the (0,0,10) 

subset (all benches painted blue or we clone Polly 10 times).

Places for the separating bars can be chosen in 
𝑘 + 𝑛 − 1
𝑛 − 1

ways. QED



Example.

What is the number of nondecreasing sequences of length k

made of numbers from {1,2, … , n}.

Solution.

Each such sequence begins with 𝑝1 (possibly 0) 1-s, followed 

by 𝑝2 2-s and so on. Which is a textbook example of a 𝑘-

element subset with unlimited repetitions of the 𝑛-element set 

{1,2, … , n}. Hence, the answer is 
𝑘 + 𝑛 − 1
𝑛 − 1

. 

Notice that the condition "nondecreasing" has no effect on the 

answer.



Example.

What is the number of nondecreasing sequences of length k

made of numbers from {1,2, … , n} and containing at least 

one of each of the numbers.

Solution.

Each such sequence begins with 𝑝1 (𝑝1 ≥ 1) 1-s, followed by 

𝑝2 (𝑝2 ≥ 1) 2-s and so on. This leaves exactly 𝑘 − 𝑛 places in 

the sequence to be occupied by those "extra" numbers and it 

means also that the answer in the case 𝑘 < 𝑛 is nil. In other 

words, we must calculate the number of 𝑘 − 𝑛 - element 

subsets with repetitions of the 𝑛-element set {1,2, … , n}, 

which is 
(𝑘 − 𝑛) + 𝑛 − 1

𝑛 − 1
=

𝑘 − 1
𝑛 − 1

.

(1, … , 2,… ,…… , 𝑛 − 1,… , 𝑛, … )

length 𝑘 but 𝑛 places taken



Let's see what it means in practice. First, take 𝑘 = 𝑛. This 

means we want to count 𝑛-long nondecreasing sequences of 

1,2,… , 𝑛. Clearly, there is only one, (1,2,… , 𝑛). This supports 

our formula because 
𝑛 − 1
𝑛 − 1

= 1. Let 𝑘 = 𝑛 + 1. Our 

sequences look like (1,1,2,… , 𝑛), 1,2,2,3,… , 𝑛 etc. which 

means the answer is 𝑛 and 
𝑛 + 1 − 1
𝑛 − 1

=
𝑛

𝑛 − 1
= 𝑛.



Comprehension.

What happens if you reverse the meaning of stars and bars?

The number of such sequences is of course the same as 

before, you choose places for 𝑛 − 1 stars in the 𝑘 + 𝑛 − 1 -

long sequence instead of 𝑛 − 1 bars, but what is the meaning 

of this result, say in the language of benches and colors? Or in 

terms of sets and subsets with repetitions? Or in terms of 

counting solutions of an equation?



PROPERTIES OF THE 

NEWTON'S BINOMIAL COEFFICIENT 
𝑛
𝑘

Why the hell Newton's?

Why the hell is it called binomial? 

Why the hell is it called a coefficient?



I quote Wikipedia:

Andreas von Ettingshausen introduced the notation 
𝑛
𝑘

in 1826, 

although the numbers were known centuries earlier. The earliest 

known detailed discussion of binomial coefficients is in a tenth-

century commentary, by Halayudha, on an ancient Sanskrit text, 

Pingala's Chandaḥśāstra. In about 1150, the Indian mathematician 

Bhaskaracharya gave an exposition of binomial coefficients in his 

book Līlāvatī.



Theorem. (Newton's binomial theorem)

For every two numbers 𝑎, 𝑏

𝑎 + 𝑏 𝑛 = ෍
𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘𝑏𝑛−𝑘

Proof 1. (no induction, some combinatorics!)

𝑎 + 𝑏 𝑛 = 𝑎 + 𝑏 𝑎 + 𝑏 … 𝑎 + 𝑏 = p1p2 … pn

Opening parenthesis, we get the sum of n-long products of a's 

and b's. How many of these products have exactly k a's? As 

many as ways of choosing k out of n pairs p1, p2 ,…,  pn. Each of 

the chosen 𝑘 pairs contributes an a, the remaining 𝑛 − 𝑘 pairs 

contribute b's to the product.

The number of choices is 
𝑛
𝑘

. That's why "coefficient.

A lesson to remember: we can use combinatorics in algebra.



Theorem. 

For every two natural numbers n,k, k  n 
𝑛
𝑘

=
𝑛 − 1
𝑘

+ 𝑛 − 1
𝑘 − 1

In other words, the number of k-element subset in an n-

element set is the combined number of k- and (𝑘 − 1)-element 

subsets in an (𝑛 − 1)-element set.

Proof 1. (no induction, pure algebra. Boring but works!)
𝑛 − 1
𝑘

+ 𝑛 − 1
𝑘 − 1

= 
𝑛−1 !

𝑛−𝑘−1 !𝑘!
+

𝑛−1 !

𝑛−𝑘 !(𝑘−1)!
= (algebra)

𝑛−1 !(𝑛−𝑘)

(𝑛−𝑘) 𝑛−𝑘−1 !𝑘!
+

𝑛−1 !𝑘

𝑛−𝑘 !(𝑘−1)!𝑘
=

𝑛−1 !(𝑛−𝑘)

𝑛−𝑘 !𝑘!
+

𝑛−1 !𝑘

𝑛−𝑘 !𝑘!
= 

𝑛−1 !(𝑛−𝑘+𝑘)

𝑛−𝑘 !𝑘!
= 

𝑛!

𝑛−𝑘 !𝑘!
= 

𝑛
𝑘

.

A lesson to remember: we can use algebra in combinatorics.



Theorem. 

For every two natural numbers n,k, k  n 
𝑛
𝑘

=
𝑛 − 1
𝑘

+ 𝑛 − 1
𝑘 − 1

Proof 2. (King method + induction, outline)

We designate one element of our 𝑛-element set 𝑋 king. k-

subsets of 𝑋 can be partitioned into those who do contain the 

king and those who don't. Obviously, there are 
𝑛 − 1
𝑘

𝑘-

element subsets who don't contain the king and 
𝑛 − 1
𝑘 − 1

who 

do. Hence 
𝑛
𝑘

=
𝑛 − 1
𝑘

+ 𝑛 − 1
𝑘 − 1

. QED

A lesson to remember: we can use combinatorics to prove 

algebraic formulae.



Theorem. (Newton's binomial theorem revisited)

For every two numbers a, b

𝑎 + 𝑏 𝑛 = ෍
𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘𝑏𝑛−𝑘

Proof 2. (Induction on 𝑛)

Trivial for n=1 and n=2. Suppose it holds for some n and 

consider 𝑎 + 𝑏 𝑛+1 = (𝑎 + 𝑏)෍
𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘𝑏𝑛−𝑘 =

𝑎෍
𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘𝑏𝑛−𝑘 + 𝑏෍

𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘𝑏𝑛−𝑘 =

෍
𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘+1𝑏𝑛−𝑘 + ෍

𝑘=0

𝑛
𝑛
𝑘
𝑎𝑘𝑏𝑛+1−𝑘 = 

෍
𝑘=1

𝑛+1
𝑛

𝑘−1
𝑎𝑘−1+1𝑏𝑛−(𝑘−1) + ෍

𝑘=1

𝑛+1
𝑛

𝑘−1
𝑎𝑘−1𝑏𝑛+1−(𝑘−1)



=෍
𝑘=1

𝑛+1
𝑛

𝑘−1
𝑎𝑘−1+1𝑏𝑛−(𝑘−1) + ෍

𝑘=1

𝑛+1
𝑛

𝑘−1
𝑎𝑘−1𝑏𝑛+1−(𝑘−1)

=෍
𝑘=1

𝑛+1
𝑛

𝑘−1
𝑎𝑘𝑏𝑛+1−𝑘 + ෍

𝑘=1

𝑛+1
𝑛

𝑘−1
𝑎𝑘−1𝑏𝑛−𝑘+2

The coefficient of a0bn+1 is 
𝑛
0

= 1 = 
𝑛+1
0

(k=1 in the second sum)

The coefficient of an+1b0 is 
𝑛
𝑛

= 1 = 
𝑛+1
𝑛+1

(k=n+1 in the first sum).

Apart from these two cases, the coefficient of apbn+1-p in the first 

sum is
𝑛

𝑝 − 1 and 
𝑛
𝑝 in the second one. Combining these we get the 

coefficient of ap equal to 
𝑛

𝑝 − 1 +
𝑛
𝑝 = 

𝑛 + 1
𝑝

𝑏𝑛−𝑝+1 thanks to the 

last theorem. QED

No combinatorics, pure algebra. A nightmare!


